Observing atomic collapse resonances in artificial nuclei on graphene.

نویسندگان

  • Yang Wang
  • Dillon Wong
  • Andrey V Shytov
  • Victor W Brar
  • Sangkook Choi
  • Qiong Wu
  • Hsin-Zon Tsai
  • William Regan
  • Alex Zettl
  • Roland K Kawakami
  • Steven G Louie
  • Leonid S Levitov
  • Michael F Crommie
چکیده

Relativistic quantum mechanics predicts that when the charge of a superheavy atomic nucleus surpasses a certain threshold, the resulting strong Coulomb field causes an unusual atomic collapse state; this state exhibits an electron wave function component that falls toward the nucleus, as well as a positron component that escapes to infinity. In graphene, where charge carriers behave as massless relativistic particles, it has been predicted that highly charged impurities should exhibit resonances corresponding to these atomic collapse states. We have observed the formation of such resonances around artificial nuclei (clusters of charged calcium dimers) fabricated on gated graphene devices via atomic manipulation with a scanning tunneling microscope. The energy and spatial dependence of the atomic collapse state measured with scanning tunneling microscopy revealed unexpected behavior when occupied by electrons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomic collapse, Lorentz boosts, Klein scattering, and other quantum-relativistic phenomena in graphene

Electrons in graphene, which behave as massless relativistic Dirac particles, provide a new perspective on the relation between condensed matter and high-energy physics. We discuss atomic collapse, a phenomenon in which discrete energy levels of superheavy atoms are transformed into resonant states. Charge impurities in graphene provide a convenient condensed matter system in which this effect ...

متن کامل

Observation of Electron Coherence and Fabry-Perot Standing Waves at a Graphene Edge.

Electron surface states in solids are typically confined to the outermost atomic layers and, due to surface disorder, have negligible impact on electronic transport. Here, we demonstrate a very different behavior for surface states in graphene. We probe the wavelike character of these states by Fabry-Perot (FP) interferometry and find that, in contrast to theoretical predictions, these states c...

متن کامل

Dual-band, Dynamically Tunable Plasmonic Metamaterial Absorbers Based on Graphene for Terahertz Frequencies

In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the design...

متن کامل

Nanomechanical electro-optical modulator based on atomic heterostructures

Two-dimensional atomic heterostructures combined with metallic nanostructures allow one to realize strong light-matter interactions. Metallic nanostructures possess plasmonic resonances that can be modulated by graphene gating. In particular, spectrally narrow plasmon resonances potentially allow for very high graphene-enabled modulation depth. However, the modulation depths achieved with this ...

متن کامل

Dirac point resonances due to atoms and molecules adsorbed on graphene and transport gaps and conductance quantization in graphene nanoribbons with covalently bonded adsorbates

We present a tight-binding theory of the Dirac point resonances due to adsorbed atoms and molecules on an infinite two-dimensional graphene sheet based on the standard tight-binding model of the graphene π -band electronic structure and the extended Hückel model of the adsorbate and nearby graphene carbon atoms. The relaxed atomic geometries of the adsorbates and graphene are calculated using d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 340 6133  شماره 

صفحات  -

تاریخ انتشار 2013